

Preferences for thermal retrofit measures in multi-owner buildings: A discrete choice experiment with landlords and owner-occupiers in France

Valeria Fanghella, Marie-Charlotte Guetlein, Joachim Schleich, Carine Sebi

CI GRENOBLE

Energy Evaluation Europe 2022 Conference

EDF Lab Paris-Saclay 28-30 September

BACKGROUND

Condominiums

.....account for 28% of the building stock in France; 50% of which were built before 1914

.....represent less than 18% of the annual stock retrofitted

- Retrofit rates must increase rapidly if France wants to meet its target to make all buildings nearly zero emission buildings by 2050
- Retrofitting multi-owner buildings is particularly challenging because they involve multiple co-owners with heterogeneous
 - preferences
 - financial capabilities
 - incentives to invest (e.g. owner-occupiers and landlords)

OBJECTIVES

Empirically analyse co-owners' preferences for thermal retrofit measures via discrete choice experiments (DCEs), thereby focussing on

- Equity financing versus loan financing (private or 'collective' loans)
- Transferability of loans, i.e., the possibility to transfer the payment obligations to the next owner in case the condominium is sold
- Split incentive problems in multi-owner buildings
 - Owner-occupiers vs. landlords (landlord-tenant problem in multi-owner buildings?)
 - Asymmetric distribution of benefits across co-owners

CONTRIBUTION

Literature on financing of retrofit measures

 Little is known about homeowners' preferences for different forms of capital provisions for retrofit measures, including on-bill financing and property assessed clean energy financing (PACE) (Brown, 2019)

 \rightarrow We consider different financing schemes and transferability of loan \rightarrow We consider debt aversion (Prelec & Lowenstein, 1998; Schleich et al., 2021)

• Studies on financial barriers focus on owner-occupiers (Albrecht & Hamels, 2021; Broers et al., 2019; Wilson et al., 2015); exception is Phillips (2012);

 \rightarrow We consider both, owner-occupiers and landlords

CONTRIBUTION

Literature on split incentives

• Previous studies are based on samples of owners and tenants (Charlier, 2015; Davis, 2012; Gillingham et al., 2012; Krishnamurthy & Kristrom, 2015)

 \rightarrow Our sample includes owner-occupiers and landlords (not tenants)

Little is known about other split incentive problems in multi-owner buildings
→ We explore the effect of an asymmetric distribution of benefits across
Co-owners

5

CONTRIBUTION

DCEs for retrofit measures suggest that investors prefer

- Lower upfront costs, and higher heating cost savings (all)
- Longer warranty periods (Achtnicht, 2011; Achtnicht & Madlener, 2014; Schleich et al., 2022)
- Measures recommended by peers/experts (Scarpa & Willis, 2010; Schleich et al., 2022; Willis et al., 2011)
- Technologies they are familiar with (Lang & Lanz, 2021)
- 'Environmentally friendly' technologies (Achtnicht, 2011; Achtnicht & Madlener, 2014; Banfi et al., 2008; Franceschinis et al., 2017; Ruokamo, 2016)
- Technologies with co-benefits (comfort, noise reduction) (Banfi et al., 2008; Galassi & Madlener, 2017)
- Lower transaction costs such (installation time, inconveniences) (Franceschinis et al., 2017; Ruokamo, 2016; Scarpa & Willis, 2010; Willis et al., 2011; Schleich et al., 2022)

METHODOLOGY

- Discrete choice experiment on retrofit measures in multi-owner buildings with a representative sample of the French adult population in June 2021
 - 744 owner-occupiers
 - 524 landlords
- Costs, financing mechanisms, absolute heating cost savings, relative heating cost savings,
 - > Three financing mechanisms (private equity, private loan, collective loan)
 - Loan-based financing mechanisms: 15 years, zero interest rate, repaid monthly either via regular instalments (private loan) or condominium fees (collective loan)
 - Transferable or not transferable

METHODOLOGY

Parmi les options suivantes, laquelle est-ce que vous préférez ?

(Veuillez prendre svp en considération la manière dont cet investissement affectera votre budget.)

Costs		Option A : Via les charges de copropriété	Option B : Par prêt immobilier	Option C : Financement par capital
Absolute savings	Reste à charge	14 000 € (Augmentation des charges de 78€/mois pendant 15 ans)	9 000 € (Remboursement de 50€/mois pendant 15 ans)	9 000 € (9 000€ en une seule échéance)
	Réduction de la facture de chauffage	70 %	40 %	40 %
	Comparées à la plupart des autres foyers, vos léconomies d'énergie sont	similaires	supérieures	inférieures
Relative savings	En cas de vente	futur acquéreur continuera à payer les coûts	je continuerai à payer les coûts	
Loa transfei	an rability	Option A : via les charges copropriété	de Option B : par prêt immobilier	Option C : financement par capital
	Je préfère :	0	0	0

« cheap talk »

Financing

mechanism

RESULTS OF MIXED LOGIT MODEL

Mean			
costs	-0.0166***		
	(0.000)	prefer lower upfront costs and higher	
savings	0.0248***	heating cost savings	
	(0.000)		
moresaving	0.3562***		
	(0.000)	prefer higher heating cost savings for own	
samesaving	0.2054***	condominium (split incentives? behavioral?)	
	(0.000)		
transfer	0.8322***	nrefer loan that can be transferred	
	(0.000)		\mathbf{V}
ASCcollectiveloan	-0.1716*		
	(0.073)	prefer equity capital and collective loan to	
ASCprivateloan	-0.4323***	private loan	
	(0.000)		
ASC	-9.2054***	prefer to invest rather than not invest	
	(0.000)		

RESULTS OF LATENT CLASS MODEL

	Class1	Class2
	("loan lovers")	("equity lovers")
Attributes		
costs	-0.0083***	-0.0138***
	(0.000)	(0.000)
savings	0.0121***	0.0264***
	(0.000)	(0.000)
moresaving	0.2373***	0.4895***
	(0.000)	(0.000)
samesaving	0.1559***	0.2087***
	(0.000)	(0.002)
transfer	0.4901***	0.6786***
	(0.000)	(0.000)
ASCcollectiveloan	1.3677***	-2.2349***
	(0.000)	(0.000)
ASCprivateloan	1.1760***	-2.1081***
	(0.000)	(0.000)
ASC	-2.2591***	-5.2437***
	(0.000)	(0.000)
Shares	64.3%	30.5%

Membership	bership Class1 Class2		
	("loan lovers")	("equity lover	<u>s")</u>
Female	0.5105*	0.5176*	
	(0.086)	(0.094)	
H_inc	0.0831	0.3702	
	<u>(0.795)</u>	(0.266)	
Occupier	-0.0826	-0.2932	landlord tenant
	(0.809)	(0.408)	
Age	-0.0003	0.0133	
	(0.976)	(0.255)	
Grad	-0.1682	0.0577	
	(0.585)	(0.857)	
Hh_members	-0.0283	-0.2036	
	(0.836)	(0.162)	
H_debtav	-1.1533***	-0.5851*	debt aversion
	(0.000)	(0.066)	
H_envid	-0.0654	-0.0835	
	(0.826)	(0.786)	
H_risk	0.2742	0.2114	
	(0.379)	(0.513)	
H_time	0.3782	0.2398	
	(0.224)	(0.456)	
Homesize	-0.0070	-0.0045	
	(0.143)	(0.367)	
Likelymove	-0.0864	-0.1786	
	(0.635)	(0.344)	
Renov_cond	-0.0117	0.5017	
	(0.969)	(0.113)	
Renov_building	-0.1381	-0.6472 [*]	
-	(0.664)	(0.053)	
N_cond	-0.0006	-0.0029	
	(0.799)	(0.271)	

ADDITIONAL SURVEY RESULTS

Propriétaire occupant

Propriétaire bailleur

Total

CONCLUSIONS

1) Heterogeneous preferences over financing mechanisms

- equity > collective loan > private loan
 - correlated with debt aversion

 \rightarrow facilitate collective loans

• preference for loans that can be transferred if condominium is sold

 \rightarrow facilitate transfer of loans

2) No evidence for landlord-tenant problem

 \rightarrow b/c of policies, 'confounding factors' (e.g. income), hassle costs, different motivational factors, ... ?

- 3) Relative heating cost savings matter
 - → split incentives, behavioural (reference-dependent preferences)?
 - \rightarrow more research needed

THANK YOU !

LITERATURE

Achtnicht, M. (2011). Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany. *Ecological Economics*, *70*(11), 2191–2200. https://doi.org/10.1016/j.ecolecon.2011.06.026

Achtnicht, M., & Madlener, R. (2014). Factors influencing German house owners' preferences on energy retrofits. *Energy Policy*, *68*, 254–263. https://doi.org/10.1016/j.enpol.2014.01.006

Banfi, S., Farsi, M., Filippini, M., & Jakob, M. (2008). Willingness to pay for energy-saving measures in residential buildings. *Energy Economics*, *30*(2), 503–516. <u>https://doi.org/10.1016/j.eneco.2006.06.001</u>

Brown, D., Sorrell, S., & Kivimaa, P. (2019). Worth the risk? An evaluation of alternative finance mechanisms for residential retrofit. *Energy Policy*, *128*, 418–430. https://doi.org/10.1016/j.enpol.2018.12.033

Charlier, D. (2015). Energy efficiency investments in the context of split incentives among French households. *Energy Policy*, 87, 465–479. <u>https://doi.org/10.1016/j.enpol.2015.09.005</u>

Field, E. (2009). Educational Debt Burden and Career Choice: Evidence from a Financial Aid Experiment at NYU Law School. *American Economic Journal: Applied Economics*, 1(1), 1–21. https://doi.org/10.1257/app.1.1.1

Franceschinis, C., Thiene, M., Scarpa, R., Rose, J., Moretto, M., & Cavalli, R. (2017). Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory. *Energy*, *125*, 313–326. https://doi.org/10.1016/j.energy.2017.02.060

Galassi, V., & Madlener, R. (2017). The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions. *Ecological Economics*, 141, 53–65. <u>https://doi.org/10.1016/j.ecolecon.2017.05.021</u>

LITERATURE

Gillingham, K., Harding, M., & Rapson, D. (2012). Split incentives in residential energy consumption. *Energy Journal*, 33(2), 37–62. https://doi.org/10.5547/01956574.33.2.3

Krishnamurthy, C. K. B., & Kristrom, B. (2015). How large is the Owner-Renter Divide in Energy Efficient Technology? Evidence from an OECD cross-section. *The Energy Journal*, *36*(4). https://doi.org/10.5547/01956574.36.4.ckri

Lang, G., & Lanz, B. (2021). Energy efficiency, information, and the acceptability of rent increases: A survey experiment with tenants. *Energy Economics*, *95*, 105007. <u>https://doi.org/10.1016/j.eneco.2020.105007</u>

Meissner, T. (2016). Intertemporal consumption and debt aversion: an experimental study. *Experimental Economics*, *19*(2), 281–298. https://doi.org/10.1007/s10683-015-9437-0

Michelsen, C. C., & Madlener, R. (2012). Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany. *Energy Economics*, *34*(5), 1271–1283. https://doi.org/10.1016/j.eneco.2012.06.009

Prelec, D., & Lowenstein, G. (1998). The Red and the black: Mental Accounting of Savings and Debt. In *Marketing Science* (Vol. 17, Issue 1, pp. 4–28).

Ruokamo, E. (2016). Household preferences of hybrid home heating systems – A choice experiment application. *Energy Policy*, *95*, 224–237. https://doi.org/10.1016/j.enpol.2016.04.017

Scarpa, R., Ferrini, S., & Willis, K. (n.d.). Performance of Error Component Models for Status-Quo Effects in Choice Experiments. In *Applications of Simulation Methods in Environmental and Resource Economics* (pp. 247–273). Springer-Verlag. https://doi.org/10.1007/1-4020-3684-1_13

LITERATURE

Scarpa, R., & Willis, K. (2010). Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies. *Energy Economics*, *32*(1), 129–136. https://doi.org/10.1016/j.eneco.2009.06.004

Schleich, J., Faure, C., & Meissner, T. (2021). Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion. *Energy Policy*, *149*(November 2020), 112025. https://doi.org/10.1016/j.enpol.2020.112025

Schleich, J., Guetlein, M.-C., Tu, G., & Faure, C. (2022). Household preferences for private versus public subsidies for new heating systems: insights from a multi-country discrete choice experiment. *Applied Economics*, *00*(00), 1–18. https://doi.org/10.1080/00036846.2022.2030043

Tversky, A., & Kahneman, D. (1991). Loss Aversion in Riskless Choice: A Reference-Dependent Model. *The Quarterly Journal of Economics*, *106*(4), 1039–1061. https://doi.org/10.2307/2937956

Walters, D., Erner, C., Fox, C., Scholten, M., Read, D., & Trepel, C. (2016). Debt Aversion: Anomalous in Theory, Advantageous in Practice. *Advances in Consumer Research*, *44*, 179–184.

DEBT AVERSION SCALE

Adapted from (Walters et al., 2016):

"If I have debts, I like to pay them as soon as possible"

"If I have debts, I prefer to delay paying them if possible, even if it means paying more in total"

"If I have debts, it makes me feel uncomfortable"

"If I have debts, it does not bother me" (reversed)"

"I dislike borrowing money"

(1 = "Strongly disagree" to 5 = "Strongly agree")

Dummy equal to 1 if participant has a higher debt aversion score than the median, 0 otherwise.