

EEAP Conference 2019

Experiences of evaluating Energy transition policies in Europe

30.10.2019

Presented by: Chun Xia-Bauer

Johannes Thema, Felix Suerkemper, Florin Vondung, Thomas Götz

Wuppertal Institute for Climate, Environment and Energy

Evaluation approaches in Europe Work from Wuppertal Institute and others

> Ex-post evaluations

• Example : Programme for heating optimization through efficient pumps and hydraulic balancing in Germany

> Ex-ante evaluations

• Examples from the EU: Ecodesign Directive

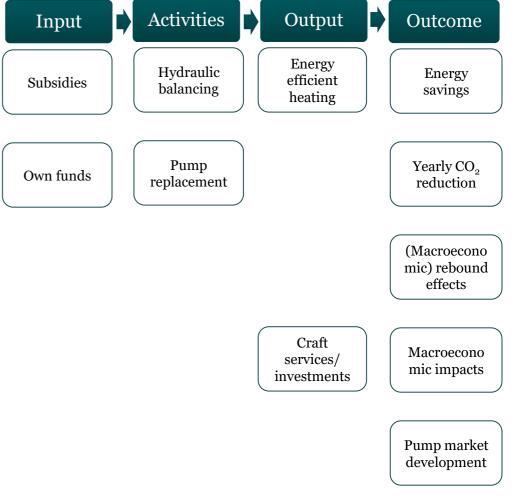
> Multiple impacts

- Ex-ante assessment
- Ex-post assessment

Ex-post evaluation Example : Programme for heating optimization through efficient pumps and hydraulic balancing in Germany (I)

- > Programme duration: 2016-2020
- > Target: Incentivize replacement of old heating system circulators and warm water circulation pumps with highly efficient pumps and hydraulic optimization of heating systems
- > Subsidy level: 30% of the net investment costs
- Target groups: Private owners, companies, self-employed, municipal bodies, legal persons under private law
- Funding: German Federal Ministry for Economic Affairs and Energy

Legal requirement to evaluate public subsidy programmes → Wuppertal Institut and Arepo Consult carry out programme evaluation (formative and summative ex-post evaluation)


Source: https://www.deutschland-machtseffizient.de/KAENEF/Redaktion/DE/Foerderpro gramme/heizungsoptimierung.html

Ex-post evaluation Example 1: Programme for heating optimization through efficient pumps and hydraulic balancing in Germany (II)

Evaluation Approach

- First step: development of programme theory to
 - understand causal chains and impacts and
 - identify suitable indicators and guide data collection
- Ex-post evaluation using engineering estimates and programme statistics to assess target achievement, effectiveness, cost-effectiveness
- Evaluation supported by market analysis, stakeholder interviews and participant survey
- Continuous formulation of recommendations for programme improvement

Simplified causal chain guiding the evaluation design

Ex-ante evaluation Example: Ecodesign Directive

Ecodesign directive: provides consistent EU-wide rules for improving the environmental performance of products, sets out minimum mandatory requirements for the energy efficiency of these products. => 2019 extended to include **energy-related products (ErP)**

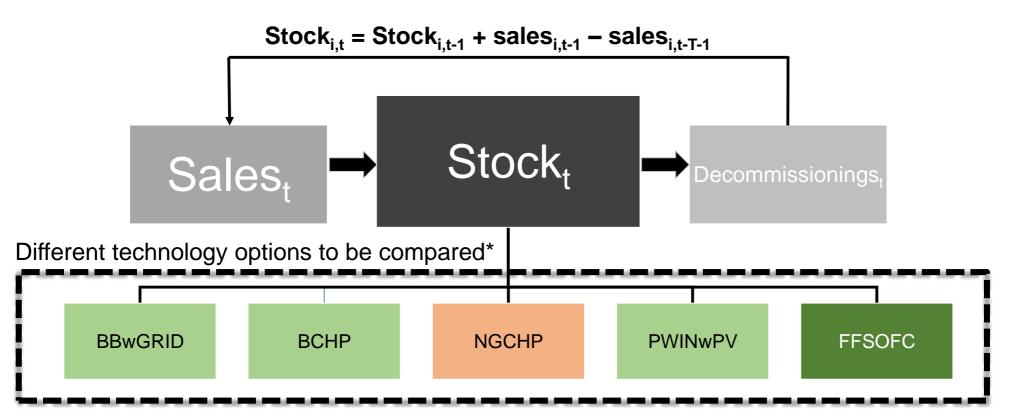
Example Ecodesign studies (with involvement by Wuppertal Institute):

Smart appliances, Refrigerated containers, Local space heating products, Solid fuel small combustion installations, Thermal insulation in buildings, Household Refrigerators & Freezers, Networked standby losses of energy using products, etc.

Ex-ante evaluation Example: Ecodesign Directive

Methodology for Ecodesign of Energy-related products (MEErP) 2011: allow <u>ex-ante</u> <u>evaluating</u> whether and to which extent various energy-related products fulfil certain criteria according the Ecodesign Directive.

- Task 1 Scope (preliminary product definitions, identifying standards and legislation);
- Task 2 Markets (market stock and trend, consumer expenditure for LCC);
- Task 3 Users (Barriers to possible Ecodesign measures, user parameters influence the environmental impact);
- Task 4 Technologies (features of existing products, BAT, BNAT);
- Task 5 Environment & Economics (Base case LCA & LCC);
- Task 6 Design options;
- Task 7 Scenarios Modelling (policies, scenarios, impact assessment) stakeholder involvement!


https://ec.europa.eu/docsroom/documents/26525

Ex-ante evaluation Example 2: Ecodesign Directive

e.g. Task 7 - Example for ex-ante impact assessment / scenario analysis

→ Scheme of the WIKUE dynamic stock model used for Impact Assessments (simplified)

Source: Wuppertal Institute, (*here indicative examples / abbreviations for different combustion installations / CHP systems)

06.11.2019

Ex-ante evaluation Example 2: Ecodesign Directive

Task 7 - Example results, environmental impacts (excerpt)

		Technologies & high sales scenario						
		APPLICATION A1 2020-2050						
		BBwGrid	BCHP	NGCHP	PWINwPV	FFSOFC		
ENVIRONMENT								
Solid Fuels	(GJ)	228.292.615	367.192.412	354.516.353	216.018.818	321.951.123		
Electricity	(GWh)	586	-36.249	-49.601	-21.080	-21.081		
GHG	(t CO ₂ -eq.)	1.079.522	-8.828.560	5.408.250	-5.124.172	-4.700.647		
со	(t)	59.273	1.474	6.848	-947	-1.088		
OGC	(t)	1.681	-70	1.095	-38	-57		
TSP	(t)	19.647	-593	-1.146	-314	-329		
NO _x	(t)	39.597	49.882	-4.564	19.196	20.043		

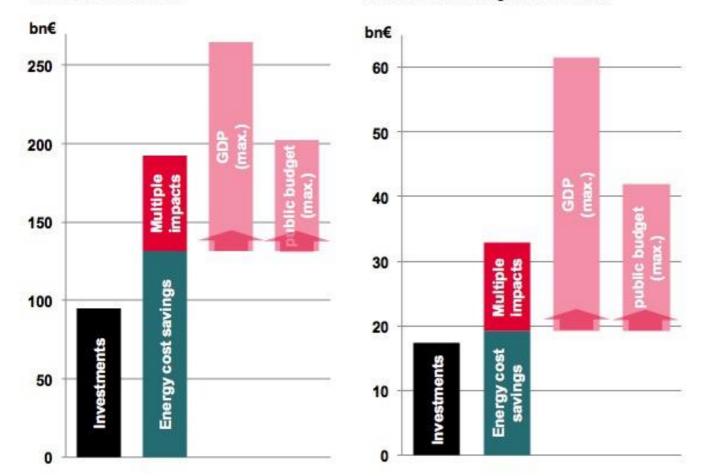
		Technologies & medium sales scenario				
		APPLICATION A1 2020-2050				
		BBwGrid	BCHP	NGCHP	PWINwPV	FFSOFC
ENVIRONMENT						
Solid Fuels	(GJ)	117.228.141	188.553.117	182.043.967	110.925.553	165.321.738
Electricity	(GWh)	300	-18.540	-25.369	-10.782	-10.782
GHG	(t CO ₂ -eq.)	554.173	-4.523.478	2.790.793	-2.625.454	-2.407.974
со	(t)	30.437	765	3.529	-481	-554
OGC	(t)	863	-35	564	-19	-29
TSP	(t)	10.089	-303	-586	-160	-168
NOx	(t)	20.333	25.637	-2.313	9.870	10.305

Source: Wuppertal Institute, (*here indicative examples / abbreviations for different combustion installations / CHP systems)

Ex-ante assessment multiple impacts (societal perspective) (Example: COMBI project

COMBI aimed at quantifying the **multiple non-energy benefits of energy efficiency** (building, transport and industry) in the EU-28 area and incorporate those multiple impacts into decision-support frameworks for policy-making

		Input data	Impact category	Modelling approach	Impacts covered (additional savings)		<u> </u>
Scenario			Air pollution	GAINS model (IIASA)	Air pollutants (NOx, PM10, PM2.5, SO2, VOC) Affected ecosystem area (acidification, eutrophication)	→	OMBI
Raceline Sc		• energy savings	Resources	Life-Cycle modelling (Material Input per	Human health (through air pollution) Ecological footprint (Biotic materials, fossil fuels, metal ores, minerals, unused	→	onlin
Bace		additional data: stocks, scenario levels	Social welfare	Socio-economic	extraction) Health from indoor pollution		ne tool
ario		etc.	MANCH	modelling	Health from building conditions (asthma, excess winter deaths)	→	<u> </u>
Scenario				Short-term: Input- Output modelling	Labour productivity (residential/tertiary buildings, transport) Employment GDP		
Sucv	7	• investment costs	Cepetagen CCE		Public budget		
Efficiency			Economy	Long-term: CGE modelling	Fossil fuel prices EUA prices	→	
			Energy system	LEAP modelling	Structural effects Avoided combustion/investment in combustion plants	+	
			Energy security	LEAP modelling	De-rated capacity margin Energy intensity		
				elt m	Fossil fuel imports Energy security index	-	Wupperta Institut
06	.11.2	019			9		


Ex-ante assessment multiple impacts Example: COMBI – key results (EU-wide figures)

Investments, energy cost savings and multiple impacts (bn€ annual in 2030)

Residential building refurbishment

All COMBI actions a)

CAIculating and Operationalising the Multiple Benefits of Energy Efficiency in Europe

combi-project.eu/tool

^{a)} all EEI actions except modal shifts which cannot be included to CBA due to no availability of infrastructure investment costs and trucks due to unreliability of out-dated investment costs

Ex-ante assessment multiple impacts Example: COMBI – key results (EU-wide figures)

- Bringing all quantifiable multiple impacts together in **one unified database**
- Many impacts could not, or not comprehensively, be quantified due to insufficient data and evidence
- While COMBI covers the sectors of building, transport and industry, they are **not covered in all possible detail.**
- Almost half of monetised impacts have potential overlaps with other impacts=> Exclusion
- Input data based on the state of knowledge and latest available data on energy efficiency improvement (EEI) actions, NOT including technology development and costs reduction

^{a)} all EEI actions except modal shifts which cannot be included to CBA due to no availability of infrastructure investment costs and trucks due to unreliability of out-dated investment costs

Thank You For Your Attention

Ex-ante assessment multiple impacts Example: COMBI – key results (EU-wide figures)

End-use energy efficiency action – improving energy efficiency in or through:
residential refurbishment of the building shell + space heating + ventilation + space cooling (air-conditioning)
residential new dwellings
residential lighting (all dwellings);
residential cold appliances (all dwellings);
non-residential refurbishment of building shell + space heating + ventilation + space cooling (air-conditioning)
non-residential new buildings
non-residential lighting (all buildings)
non-residential product cooling (all buildings)
passenger transport – modal shift
passenger transport – motorized two-wheelers
passenger transport – cars
passenger transport – public road/buses
freight transport – modal shift
freight transport – light duty trucks (LDT)
freight transport – heavy duty trucks (HDT)
industry (7 sectors) - high temperature process heating
industry (7 sectors) - low and medium temperature process heating
industry (7 sectors) – process cooling
industry (7 sectors) – specific process electricity
industry (7 sectors) – motor drives
industry (7 sectors) – HVAC in industrial buildings

^{a)} all EEI actions except modal shifts which cannot be included to CBA due to no availability of infrastructure investment costs and trucks due to unreliability of out-dated investment costs